GBGS SCHEME

USN			15AU82
-----	--	--	--------

Eighth Semester B.E. Degree Examination, Aug./Sept.2020 Mechanical Vibrations

Time: 3 hrs.

Max. Marks: 80

Note: i) For Regular Students: Answer any FIVE full questions irrespective of modules.
ii) For Arrear Students: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. A harmonic has an amplitude of 0.05 m and a frequency 25 Hz. Find the time period, maximum velocity and maximum acceleration. (06 Marks)
 - b. With a neat sketch, explain beat phenomenon.

(06 Marks)

- c. Explain the following:
 - (i) Linear and non-linear vibration
 - (ii) Transverse and torsional vibration

(04 Marks)

- 2 a. Determine the natural frequency of a spring mass system where the mass of the spring is also to be taken into account. (08 Marks)
 - b. Determine the natural frequency of the system shown in Fig.Q2(b).

(08 Marks)

Module-2

3 a. List and explain different types of damping.

(08 Marks)

b. Derive the expression for the logarithmic decrement ' δ '.

(08 Marks)

- a. What is critical speed of shaft? Discuss speeds above and below critical speed with and without air damping. (08 Marks)
 - b. A shaft carrying a rotor of weight 450 N and eccentricity 2.54 mm rotates at 1200 rpm. Determine:
 - (i) Steady state whirl amplitude
 - (ii) Maximum whirl amplitude during start up condition of the system.

Assume the stiffness of shaft as 36000 N/m and external damping ratio as 0.1.

Module-3

- 5 a. A mass of 100 kg has been mounted on a spring dashpot system having spring stiffness of 19,600 N/m and damping coefficient of 100 N-sec/m, the mass is acted upon by a harmonic force 39 N at the undamped natural frequency of the system. Determine:
 - (i) Amplitude of vibration of the mass
 - (ii) Phase difference between the force and displacement
 - (iii) Force transmissibality ratio

(08 Marks)

- b. Write notes on:
 - (i) Vibration Isolation
 - (ii) Transmissibility

(08 Marks)

- 6 a. An engine weighing 1000 N including reciprocatory part is mounted on springs. The weights of reciprocating part is 22 N and the stroke is 90 mm. The engine speed is 720 rpm.
 - (i) Neglecting damping find the stiffness of the spring, so that the force transmitted to the foundation is 5% of the amplitude force
 - (ii) If under the actual working condition the damping reduces the amplitude of successive vibration by 25%, determine force transmitted at 720 rpm. (08 Marks)
 - b. A machine of mass one tone is acted upon by external force of 2450 N at a frequency of 1500 rpm. To reduce the effects of vibration, isolator of rubber having a static deflection of 2 mm under the machine load and an estimated damping factor of 0.2 are used. Determine:
 - (i) Force transmitted to the foundation
 - (ii) Amplitude of vibration of the machine
 - (iii) Phase lag of the transmitted force with respect to external force.

(08 Marks)

7 Use Lagrange's equation to find equations of motion for a system shown in

Fig.Q7(i) and (ii).

Fig.Q7(i)

(16 Marks)

- 8 With sketch, explain the following:
 - (i) Vibrometer
 - (ii) Accelerometer
 - (iii) Fullarton tachometer

(16 Marks)

Module-5

Determine the natural frequencies and mode shape of the system shown in Fig.Q9. 9

(16 Marks)

a. Derive the expression for natural frequency by Dunkerley's method.
b. Find the lowest natural frequency of transverse vibration for the system shown in Fig.Q10(b) by Rayleigh's method.

(08 Marks)